翻訳と辞書 |
Lattice (module) : ウィキペディア英語版 | Lattice (module) In mathematics, in the field of ring theory, a lattice is a module over a ring which is embedded in a vector space over a field, giving an algebraic generalisation of the way a lattice group is embedded in a real vector space. ==Formal definition== Let ''R'' be an integral domain with field of fractions ''K''. An ''R''-module ''M'' is a ''lattice'' in the ''K''-vector space ''V'' if ''M'' is finitely generated, ''R''-torsion-free (no non-zero element of ''M'' is annihilated by a regular element of ''R'') and an ''R''-submodule of ''V''. It is ''full'' if ''V'' = ''K''·''M''.〔Reiner (2003) pp. 44, 108〕
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Lattice (module)」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|